Open peer review is a growing trend in academic publications. Public access to peer review data can benefit both the academic and publishing communities. It also serves as a great support to studies on review comment generation and further to the realization of automated scholarly paper review. However, most of the existing peer review datasets do not provide data that cover the whole peer review process. Apart from this, their data are not diversified enough as they are mainly collected from the field of computer science. These two drawbacks of the currently available peer review datasets need to be addressed to unlock more opportunities for related studies. In response to this problem, we construct MOPRD, a multidisciplinary open peer review dataset. This dataset consists of paper metadata, multiple version manuscripts, review comments, meta-reviews, author's rebuttal letters, and editorial decisions. Moreover, we design a modular guided review comment generation method based on MOPRD. Experiments show that our method delivers better performance indicated by both automatic metrics and human evaluation. We also explore other potential applications of MOPRD, including meta-review generation, editorial decision prediction, author rebuttal generation, and scientometric analysis. MOPRD is a strong endorsement for further studies in peer review-related research and other applications.
translated by 谷歌翻译
源代码对于研究人员重现方法并复制人工智能(AI)论文的结果至关重要。一些组织和研究人员手动收集具有可用源代码的AI论文,以对AI社区做出贡献。但是,手动收集是一项劳动密集型且耗时的任务。为了解决此问题,我们提出了一种方法,可以自动识别具有可用源代码的论文并提取其源代码存储库URL。通过这种方法,我们发现,从2010年到2019年发布的10个最高AI会议的常规论文中有20.5%被确定为具有可用源代码的论文,并且这些源代码存储库中有8.1%不再可访问。我们还创建了XMU NLP Lab ReadMe数据集,这是用于源代码文档研究的标记已读数文件的最大数据集。通过此数据集,我们发现了很多读书文件没有提供的安装说明或使用教程。此外,对AI会议论文的源代码的一般图片进行了大规模的综合统计分析。提出的解决方案还可以超越AI会议论文,以分析来自期刊和会议的其他科学论文,以阐明更多领域。
translated by 谷歌翻译
基于强化学习(RL)的图表行走在导航代理人通过探索多跳关系路径来导航代理以通过不完整的知识图(kg)来自动完成各种推理任务。然而,现有的多跳推理方法仅在短路推理路径上工作,并且倾向于利用增加的路径长度错过目标实体。这对于实际情况中的许多理由任务是不可取的,其中连接源实体的短路不完整的公斤,因此,除非代理能够寻求更多的线索,否则推理性能急剧下降路径。为了解决上述挑战,在本文中,我们提出了一种双代理强化学习框架,该框架列举了两个代理(巨型和矮人),共同走过了公斤,并协同寻找答案。我们的方法通过将其中一个代理(巨型)进行了快速寻找群集路径并为另一代理(DWARF)提供阶段明智的提示来解决长途路径中的推理挑战。最后,对几千克推理基准测试的实验结果表明,我们的方法可以更准确,高效地搜索答案,并且优于大型余量的长路径查询的基于RL的基于RL的方法。
translated by 谷歌翻译
同行评审是一项广泛接受的研究评估机制,在学术出版中发挥关键作用。然而,批评已经长期升级了这种机制,主要是因为它的低效率和主体性。近年来已经看到人工智能(AI)在协助同行评审过程中的应用。尽管如此,随着人类的参与,这种限制仍然是不可避免的。在本文中,我们提出了自动化学术纸质审查(ASPR)的概念,并审查了相关的文献和技术,讨论实现全面的计算机化审查流程的可能性。我们进一步研究了现有技术ASPR的挑战。在审查和讨论的基础上,我们得出结论,ASPR的每个阶段都有相应的研究和技术。这验证了随着相关技术继续发展的长期可以实现ASPR。其实现中的主要困难在于不完美的文献解析和表示,数据不足,数据缺陷,人机互动和有缺陷的深度逻辑推理。在可预见的未来,ASPR和同行评审将在ASPR能够充分承担从人类的审查工作量之前以加强方式共存。
translated by 谷歌翻译
捕获关系的构图模式是知识图表完成中的重要任务。它还是迈向多跳推理的基本步骤,以了解学到的知识。以前,已经开发了几种基于旋转的翻译方法来使用一系列复值对角线矩阵的产品来模拟复合关系。然而,这些方法倾向于对复合关系进行几种超薄假设,例如,强迫他们独立于实体和缺乏语义等级的交换。为了系统地解决这些问题,我们开发了一种新颖的知识图形嵌入方法,命名为密集,为复杂的关系模式提供改进的建模方案。特别地,我们的方法将每个关系分解成SO(3)基于基于组的旋转操作员和三维(3-D)欧几里德空间中的缩放操作员。这种设计原理导致我们的方法的几个优点:(1)对于复合关系,相应的对角线关系矩阵可以是非换向的,反映了现实世界应用中的主要情景; (2)我们的模型保留了关系运营和实体嵌入之间的自然互动; (3)缩放操作为实体的内在语义层次结构提供建模电力; (4)在参数大小和培训时间方面,以高计算效率实现致密的增强效果; (5)欧几里德空间中的建模实体而不是四元数空间,保持关系模式的直接几何解释。多个基准知识图上的实验结果表明,密集优于当前最先进的模型,以缺少链路预测,尤其是对复合关系。
translated by 谷歌翻译
The lack of efficient segmentation methods and fully-labeled datasets limits the comprehensive assessment of optical coherence tomography angiography (OCTA) microstructures like retinal vessel network (RVN) and foveal avascular zone (FAZ), which are of great value in ophthalmic and systematic diseases evaluation. Here, we introduce an innovative OCTA microstructure segmentation network (OMSN) by combining an encoder-decoder-based architecture with multi-scale skip connections and the split-attention-based residual network ResNeSt, paying specific attention to OCTA microstructural features while facilitating better model convergence and feature representations. The proposed OMSN achieves excellent single/multi-task performances for RVN or/and FAZ segmentation. Especially, the evaluation metrics on multi-task models outperform single-task models on the same dataset. On this basis, a fully annotated retinal OCTA segmentation (FAROS) dataset is constructed semi-automatically, filling the vacancy of a pixel-level fully-labeled OCTA dataset. OMSN multi-task segmentation model retrained with FAROS further certifies its outstanding accuracy for simultaneous RVN and FAZ segmentation.
translated by 谷歌翻译
We propose, Monte Carlo Nonlocal physics-informed neural networks (MC-Nonlocal-PINNs), which is a generalization of MC-fPINNs in \cite{guo2022monte}, for solving general nonlocal models such as integral equations and nonlocal PDEs. Similar as in MC-fPINNs, our MC-Nonlocal-PINNs handle the nonlocal operators in a Monte Carlo way, resulting in a very stable approach for high dimensional problems. We present a variety of test problems, including high dimensional Volterra type integral equations, hypersingular integral equations and nonlocal PDEs, to demonstrate the effectiveness of our approach.
translated by 谷歌翻译
Blind watermarking provides powerful evidence for copyright protection, image authentication, and tampering identification. However, it remains a challenge to design a watermarking model with high imperceptibility and robustness against strong noise attacks. To resolve this issue, we present a framework Combining the Invertible and Non-invertible (CIN) mechanisms. The CIN is composed of the invertible part to achieve high imperceptibility and the non-invertible part to strengthen the robustness against strong noise attacks. For the invertible part, we develop a diffusion and extraction module (DEM) and a fusion and split module (FSM) to embed and extract watermarks symmetrically in an invertible way. For the non-invertible part, we introduce a non-invertible attention-based module (NIAM) and the noise-specific selection module (NSM) to solve the asymmetric extraction under a strong noise attack. Extensive experiments demonstrate that our framework outperforms the current state-of-the-art methods of imperceptibility and robustness significantly. Our framework can achieve an average of 99.99% accuracy and 67.66 dB PSNR under noise-free conditions, while 96.64% and 39.28 dB combined strong noise attacks. The code will be available in https://github.com/rmpku/CIN.
translated by 谷歌翻译
Inductive reasoning is a core component of human intelligence. In the past research of inductive reasoning within computer science, logic language is used as representations of knowledge (facts and rules, more specifically). However, logic language can cause systematic problems for inductive reasoning such as disability of handling raw input such as natural language, sensitiveness to mislabeled data, and incapacity to handle ambiguous input. To this end, we propose a new task, which is to induce natural language rules from natural language facts, and create a dataset termed DEER containing 1.2k rule-fact pairs for the task, where rules and facts are written in natural language. New automatic metrics are also proposed and analysed for the evaluation of this task. With DEER, we investigate a modern approach for inductive reasoning where we use natural language as representation for knowledge instead of logic language and use pretrained language models as ''reasoners''. Moreover, we provide the first and comprehensive analysis of how well pretrained language models can induce natural language rules from natural language facts. We also propose a new framework drawing insights from philosophy literature for this task, which we show in the experiment section that surpasses baselines in both automatic and human evaluations.
translated by 谷歌翻译
Transformer models have achieved superior performance in various natural language processing tasks. However, the quadratic computational cost of the attention mechanism limits its practicality for long sequences. There are existing attention variants that improve the computational efficiency, but they have limited ability to effectively compute global information. In parallel to Transformer models, state space models (SSMs) are tailored for long sequences, but they are not flexible enough to capture complicated local information. We propose SPADE, short for $\underline{\textbf{S}}$tate s$\underline{\textbf{P}}$ace $\underline{\textbf{A}}$ugmente$\underline{\textbf{D}}$ Transform$\underline{\textbf{E}}$r. Specifically, we augment a SSM into the bottom layer of SPADE, and we employ efficient local attention methods for the other layers. The SSM augments global information, which complements the lack of long-range dependency issue in local attention methods. Experimental results on the Long Range Arena benchmark and language modeling tasks demonstrate the effectiveness of the proposed method. To further demonstrate the scalability of SPADE, we pre-train large encoder-decoder models and present fine-tuning results on natural language understanding and natural language generation tasks.
translated by 谷歌翻译